

TMR40XX GEARTOOTH SENSOR

TMR geartooth sensor with high sensitivity to magnetic field

General

Technical Information

The TMR40XX magnetic geartooth sensors utilize a unique push-pull Wheatstone bridge design, including one or two Wheatstone full bridges, with four or eight unshielded high sensitivity TMR sensing elements. The Wheatstone bridge creates a differential voltage output with respect to the magnetic field gradient along the sensor's sensitive direction. In the dual-bridge configuration, the two orthogonal Wheatstone full bridges provide sine and cosine voltage signals that can be used to measure both the gear tooth position and the direction of motion. The TMR40XX magnetic geartooth sensors offer superior performance with high sensitivity to the magnetic field gradient. They can detect very small changes in magnetic field, along with good temperature stability of the output signal.

Ver.2018-06

- The TMR40XX magnetic gear tooth sensors are available in 14 different standard spacings of 0.25mm、0.4mm、0.50mm、0.6mm、0.75mm、0.8mm、1.0mm、1.2mm、1.4mm、1.6mm、1.8mm、2.0mm、3.0mm and 4.0mm.
- Two types of small form factor LGA packages are available. The package dimensions are 3mm × 3mm × 0.9mm and 3mm × 6mm × 0.9mm.

Features and Benefits

- Tunneling Magnetoresistance (TMR) Technology
- High Saturation Point Allowing Operation under Large DC Magnetic Field
- Wide Air-Gap Tolerance
- High Sensitivity to Magnetic Field Gradient
- Capable of Small-Pitch Gear Tooth Detection
- DC(Zero-Speed) Operation
- Sine/Cosine Signal Outputs with Precise Phase Shift
- Excellent Thermal Stability
- Good Immunity to Environmental Magnetic Field
- Compact Ultra-Thin Package

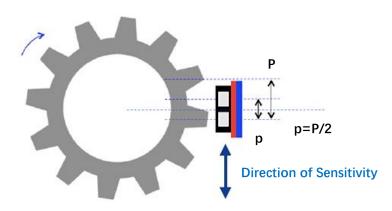
Typical Applications

- Gear Tooth Motion, Speed, and Direction Sensing
- Linear and Rotary Speed Sensing
- Linear and Rotary position Sensing
- Linear Magnetic Scales
- Magnetic Encoders

TMR geartooth sensor with high sensitivity to magnetic field

Absolute Maximum Ratings

PARAMETER	SYMBOL	LIMIT	UNIT
Supply Voltage	Vcc	7	V
Reverse Supply Voltage	H _{RCC}	7	V
Magnetic Field	He	1500	Oe ⁽¹⁾
ESD Voltage	V _{ESD}	4000	V
Operating Temperature	TA	-40~125	°C
Storage Temperature	Tstg	-50~150	°C

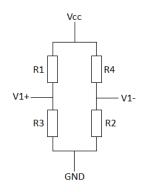

Electrical & Magnetic Characteristics (V_{CC} =1.0V, T_{A} =25 °C, Differential Output)

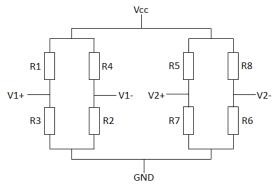
PARAMETER	SYMBOL	CONDITION	MIN	TYPICAL	MAX	UNIT
Supply Voltage	Vcc	Operating		1	7	V
Supply Current	Icc	Output Open		67(2)		μΑ
Bridge Resistance	R			15 ⁽³⁾		kOhm
Single Resistor Sensitivity	SEN			0.46		%△R/Oe
Saturation Field	Hsat			±70 ⁽⁴⁾		Oe
Linear Range 1	LIN1	LIN≥98%		±20		Oe
Linear Range 2	LIN2	LIN≥95%		±40		Oe
Offset Voltage	Voffset		-20		20	mV/V
Hysteresis	Hys	Fit@±20Oe		1		%FS
Maximun Differential Voltage Output	Vout _{Max}			650		mV/V
Temperature Coefficient of Resistance	TCR	H=0 Oe		-985		PPM/°C
Temperature Coefficient of Sensitivity	TCS			-1800		PPM/°C

Note:

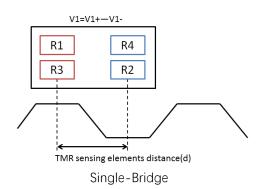
- (1) 1 Oe (Oersted) = 1 Gauss in air = 0.1 millitesla = 79.8 A/m.
- (2) Supply current is determined by the resistance of the sensor.
- (3) Custom sensor resistance may be available upon request.
- (4) The sensors may saturate if the magnetic field exceeds this range. Saturation field can be custom designed to meet special requirements.

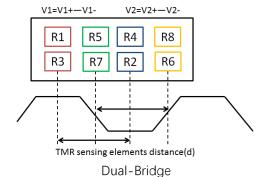
Usage Method





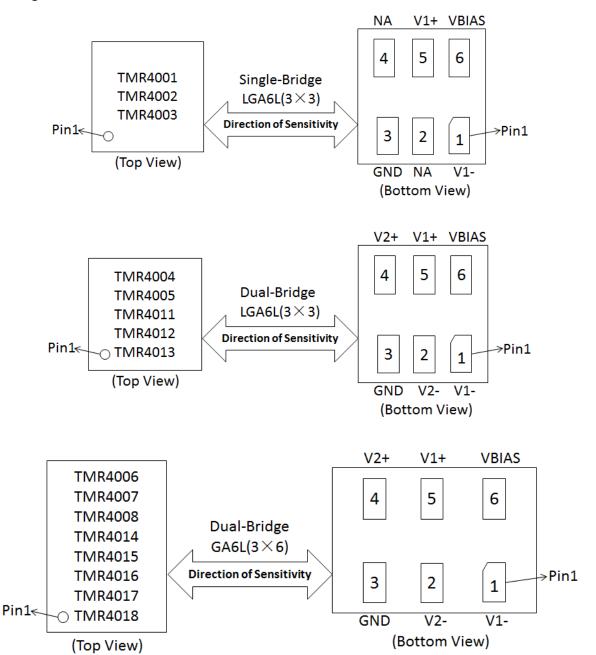
Wheatstone Bridge Connection




Single-Bridge Configuration

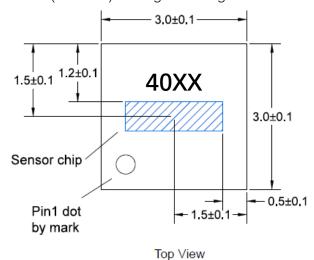
Dual-Bridge Configuration

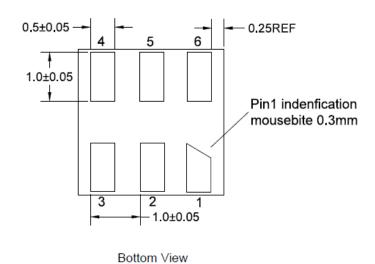
TMR Sensing Elements Layout

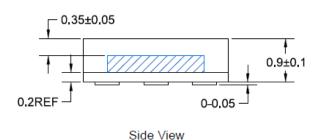


PART	SINGLE/DUAL	TMR ELEMENT SPACING	GEAR TOOTH PITCH	PACKAGE
NUMBER	BRIDGE	p(mm)	P(mm)	FORMAT
TMR4001	SINGLE	0.25	About 0.5	LGA6L(3×3×0.9)
TMR4002	SINGLE	0.5	About 1.0	LGA6L(3×3×0.9)
TMR4003	SINGLE	0.75	About 1.5	LGA6L(3×3×0.9)
TMR4004	DUAL	0.5	About 1.0	LGA6L(3×3×0.9)
TMR4005	DUAL	1	About 2.0	LGA6L(3×3×0.9)
TMR4006	DUAL	2	About 4.0	LGA6L(3×6×0.9)
TMR4007	DUAL	3	About 6.0	LGA6L(3×6×0.9)
TMR4008	DUAL	4	About 8.0	LGA6L(3×6×0.9)
TMR4011	DUAL	0.4	About 0.8	LGA6L(3×3×0.9)
TMR4012	DUAL	0.6	About 1.2	LGA6L(3×3×0.9)
TMR4013	DUAL	0.8	About 1.6	LGA6L(3×3×0.9)
TMR4014	DUAL	1	About 2.0	LGA6L(3×6×0.9)
TMR4015	DUAL	1.2	About 2.4	LGA6L(3×6×0.9)
TMR4016	DUAL	1.4	About 2.8	LGA6L(3×6×0.9)
TMR4017	DUAL	1.6	About 3.2	LGA6L(3×6×0.9)
TMR4018	DUAL	1.8	About 3.6	LGA6L(3×6×0.9)

Pin Configuration

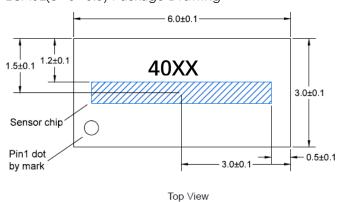


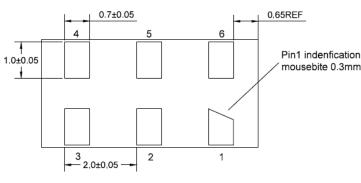


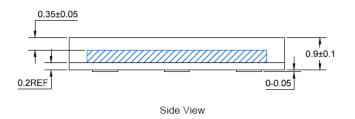


Package Information (Unit: mm) and TMR Sensor Position (Blue shadow)

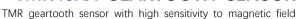
LGA6L(3×3×0.9) Package Drawing







LGA6L(3×6×0.9) Package Drawing



Bottom View

American Electronic Components Inc.

1101 Lafayette Street, Elkhart, Indiana 46516, United States of America. Web: www.aecsensors.com Email: sales@aecsensors.com Toll: 888 847 6552, Tel: +1 574 293 8013

The information provided herein by MultiDimension Technology Co., Ltd. (hereinafter MultiDimension) is believed to be accurate and reliable. Publication neither conveys nor implies any license under patent or other industrial or intellectual property rights. MultiDimension reserves the right to make changes to product specifications for the purpose of improving product quality, reliability, and functionality. MultiDimension does not assume any liability arising out of the application and use of its products. MultiDimension's customers using or selling this product for use in appliances, devices, or systems where malfunction can reasonably be expected to result in personal injury do so at their own risk and agree to fully indemnify MultiDimension for any damages resulting from such applications.