

TMR9003

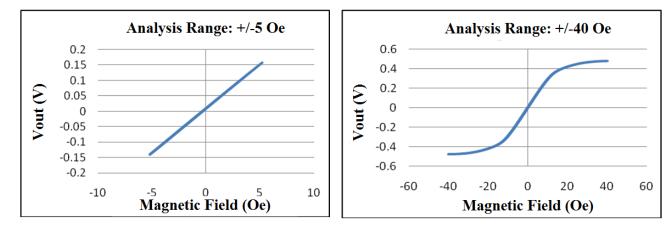
Ultra High Sensitivity, Ultra Low Noise TMR linear sensor

General Description

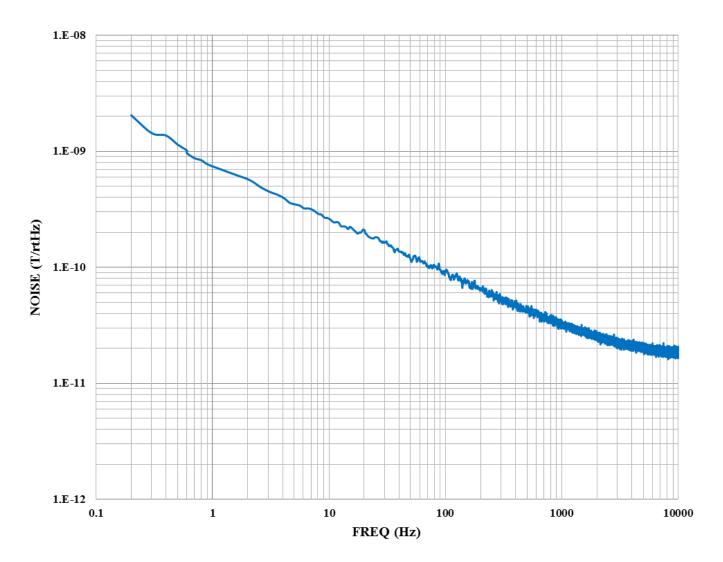
The TMR9003 linear sensor utilizes a unique push-pull Wheatstone bridge composed of four TMR sensor elements. The unique bridge design provides a high sensitivity differential output that is linearly proportional to a magnetic field applied parallel to the surface of the sensor package, and it provides superior temperature compensation of the output. The TMR9003 is assembled in a $6mm \times 5mm \times 1.5mm$ SOP8 package.

Features and Benefits

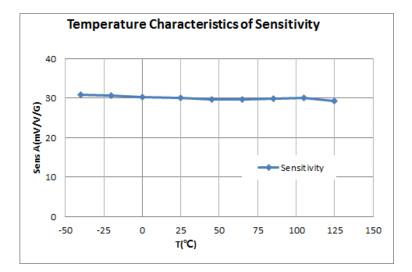
- Tunneling Magnetoresistance (TMR) Technology
- High Sensitivity(~30mV/V/Oe)
- Ultra-low Noise Spectral Density(750pT/√Hz@1Hz)
- Very-low Power Consumption
- Excellent Thermal Stability
- Low Hysteresis
- Compatible with Wide Range of Supply Voltages
- No need for set/reset calibration


Applications

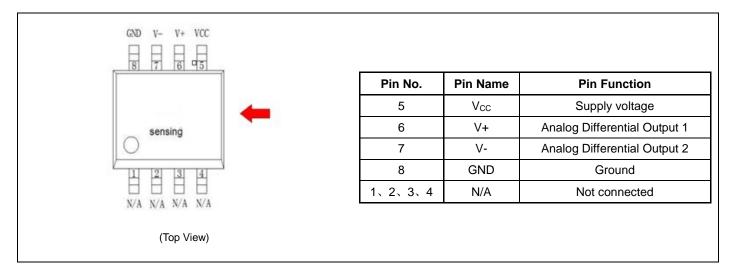
- Weak Magnetic Field Sensing
- Current Sensors
- Position and Displacement Sensing
- Biomedical Sensing
- Magnetic Communication


Transfer Curve

The following figure shows the response of the TMR9003 to an applied magnetic field in the range of ± 5 Oe and ± 40 Oe when the TMR9003 is biased at 1 V. The following specifications are calculated over an analysis range of ± 5 Oe.


Sensor Noise

The following figure illustrates the Power SpectralDensity (PSD) of the TMR9003 self noise (*N*i). The 1/*f*noise is approximately750 pT/ $\sqrt{\text{Hz}}$ @ 1Hz, and the white noise is approximately 20pT/ $\sqrt{\text{Hz}}$ @ 10kHz.


Sensitivity temperature characteristic curve.

The figure below shows the temperature characteristic curve of the TMR9002 sensor (test temperature range: -40, c ~125)

Pin Configuration

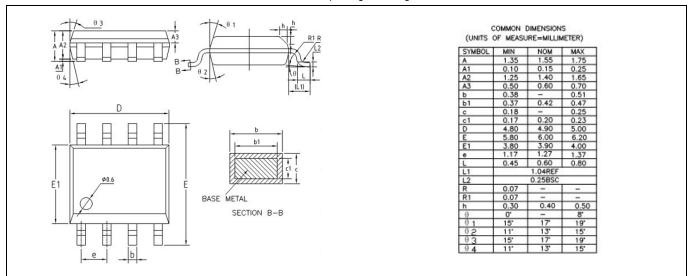
(Arrow indicates direction of applied field that generates a positive output voltage.)

Absolute Maximum Ratings

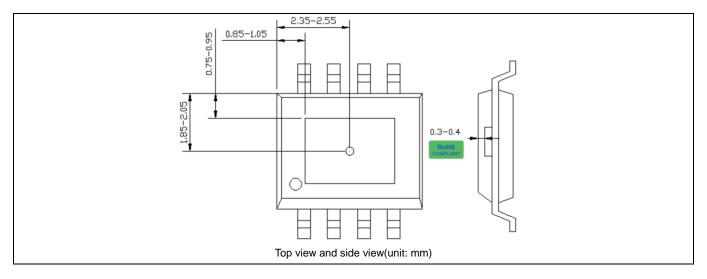
Parameter	Symbol	Limit	Unit	
Supply Voltage	V _{CC}	3	V	
Reverse Supply Voltage	V _{RCC}	3	V	
Max Exposed Field	H _E	4000	Oe ⁽¹⁾	
ESD Voltage	V _{ESD}	4000	V	
Operating Temperature	T _A	-40~125	°C	
Storage Temperature	T _{stg}	-50 ~150	C°	

Specification (V_{CC}=1.0V, T_A=25°C)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Supply Voltage	V _{cc}	Normal Operating		1	3	V
Supply Current	I _{CC}	Output Open		20 ⁽²⁾		μA
Resistance	R			50		kOhm
Sensitivity	SEN	Fit ±50e		30		mV/V/Oe
Saturation Field	H _{sat}			±15		Oe
Non -Linearity	NONL	Fit ±50e		0.5		%FS
Offset Voltage	V _{offset}			10		mV/V
Hysteresis	Hys	Fit ±50e		0.1		Oe
Resistance temperature coefficient	TCR	-40 ⁰c ~125 ⁰c		-487		PPM/⁰c
Sensitivity temperature coefficient.	TCS	-40 ºc ~125 ºc		-495		PPM/ºc
Self Noise	Ni	@1Hz		750		pT/√Hz


Note:

(1) 1 Oe (Oersted) = 1 Gauss in air = 0.1 millitesla = 79.8 A/m.


(2) ICC= VCC/R, Iccwill vary under different R in practice and it can be customized accordingly.

Package Information

SOP8 package drawing

TMR Sensor Position

American Electronic Components Inc.

1101 Lafayette Street, Elkhart, Indiana 46516, United States of America. Web: www.aecsensors.com Email: sales@aecsensors.com Toll: 888 847 6552, Tel: +1 574 293 8013

The information provided herein by MultiDimension Technology Co., Ltd. (hereinafter MultiDimension) is believed to be accurate and reliable. Publication neither conveys nor implies any license under patent or other industrial or intellectual property rights. MultiDimension reserves the right to make changes to product specifications for the purpose of improving product quality, reliability, and functionality. MultiDimension does not assume any liability arising out of the application and use of its products. MultiDimension's customers using or selling this product for use in appliances, devices, or systems where malfunction can reasonably be expected to result in personal injury do so at their own risk and agree to fully indemnify MultiDimension for any damages resulting from such applications.